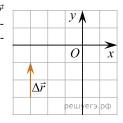
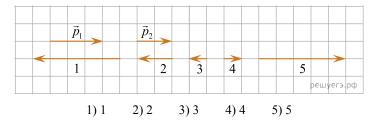

Централизованное тестирование по физике, 2022

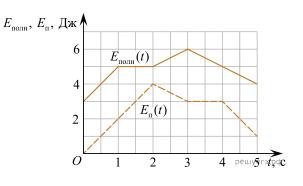
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. На рисунке представлена траектория AB движения камня, брошенного горизонтально и движущегося в вертикальной плоскости xOy. Направление скорости камня в точке C указывает стрелка, обозначенная цифрой:

- 1) 1 2) 2
- 3) 3 4) 4
- 5) 5


2. Материальная точка совершила перемещение $\Delta \vec{r}$ в плоскости рисунка (см. рис.). Для проекций этого перемещения на оси Ox и Oy справедливы соотношения, указанные под номером:


1)
$$\Delta r_x > 0, \Delta r_y > 0$$
 2) $\Delta r_x > 0, \Delta r_y < 0$ 3) $\Delta r_x < 0, \Delta r_y < 0$ 4) $\Delta r_x = 0, \Delta r_y < 0$ 5) $\Delta r_x = 0, \Delta r_y > 0$

- **3.** Тело движется вдоль оси Ox. Зависимость проекции скорости v_x тела на ось Ox от времени t выражается уравнением $v_x = A + Bt$, где A = 7 м/с и B = 2 м/с 2 . Проекция перемещения Δr_x , совершённого телом в течение промежутка времени $\Delta t = 3$ с от момента начала отсчёта времени, равна:
 - 1) 39 m 2) 30 m
- 2) 30 m 3) 18 m
- 4) 13 m
- 5) 6 м

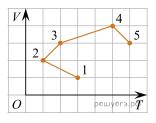
4. В начальный момент времени импульс частицы был равен \vec{p}_1 . Через некоторое время импульс частицы стал равен \vec{p}_2 (см. рис.). Изменение импульса частицы $\Delta \vec{p}$ — это вектор, обозначенный цифрой:

5. На рисунке сплошной линией показан график зависимости полной механической энергии $E_{\rm полн}$ тела от времени t, штриховой линией — график зависимости потенциальной энергии E_{Π} тела от времени t. Кинетическая энергия E_{κ}

тела оставалась неизменной в течение промежутка времени:

- 1) (0; 1) c
- 2) (1; 2) c
- 3) (2; 3) c
- 4) (3; 4) c
- 5) (4; 5) c

6. Рабочий удерживает за один конец однородную доску массой m=14 кг так, что она упирается другим концом в землю и образует угол $\alpha = 60^{\circ}$ с горизонтом (см. рис.). Если сила \vec{F} , с которой рабочий действует на доску, перпендикулярна доске, то модуль этой силы равен:

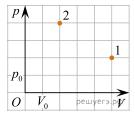

- 1) 35 H
- 2) 61 H
- 3) 70 H
- 4) 121 H
- 5) 140 H.

7. Установите соответствие между физической величиной и единицей её измерения:

- А) Количество вещества Б) Внутренняя энергия 3. моль
 - 2. Дж/моль

- 1) A152
- 2) A153
- 3) A2_b1
- 4) A3_B1
- 5) A3_{b2}

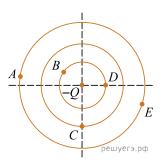
8. На VT-диаграмме изображён процесс 1-2-3-4-5, совершённый с идеальным одноатомным газом, количество вещества которого постоянно. Внутренняя энергия газа была наименьшей в точке:



1) 1

2)2

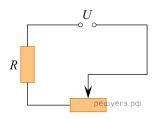
- 3)3
- 4) 4
- 5) 5


9. Идеальный газ, количество вещества которого постоянно, перевели из состояния 1 в состояние 2 (см. рис.). Если в состоянии 1 температура газа $T_1 = 400$ K, то в состоянии 2 температура газа T_2 равна:

5) 200 K

- 1) 1000 K
- 2) 800 K
- 3) 500 K
- 4) 320 K
- **10.** Для полного расплавления льда ($\lambda = 330 \text{ кДж/кг}$) массой m = 3.0 г, находящегося при температуре t=0 °C, льду необходимо сообщить минимальное количество теплоты, равное:
 - 1) 990 кДж
- 2) 900 кДж 5) 0,99 кДж
- 3) 99 кДж
- 4) 9,1 кДж

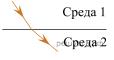
11. Неподвижный точечный отрицательный заряд -Q находится в вакууме. На рисунке изображены концентрические окружности, в центре которых расположен этот заряд. Если ϕ_A , ϕ_B , ϕ_C , ϕ_D , ϕ_E — потенциалы электростатического поля заряда в точках A, B, C, D, E соответственно, то правильными соотношениями являются:



1)
$$\varphi_C = \varphi_B$$
 2) $\varphi_B = \varphi_D$ 3) $\varphi_E < \varphi_D$ 4) $\varphi_D < \varphi_C$ 5) $\varphi_C < \varphi_A$

12. Между горизонтальными пластинами плоского воздушного заряженного конденсатора находится в равновесии песчинка массой $m=7,2\cdot 10^{-12}$ кг. Если напряжение на конденсаторе U=3,0 кВ, а расстояние между пластинами конденсатора d=4,0 см, то модуль заряда q песчинки равен:

1)
$$7,2\cdot 10^{-5}$$
 Кл 2) $3,3\cdot 10^{-6}$ Кл 3) $2,9\cdot 10^{-10}$ Кл 4) $7,2\cdot 10^{-14}$ Кл 5) $9,6\cdot 10^{-16}$ Кл


13. На рисунке изображена схема электрической цепи, состоящей из резистора с сопротивлением R и реостата с максимальным сопротивлением 2R, подключённой к источнику постоянного напряжения U. Ползунок реостата находится в среднем положении, и в реостате выделяется тепловая мощность $P_1=90$ Вт. Если ползунок реостата установить в крайнее правое положение, то тепловая мощность P_2 , выделяемая в реостате, станет равна:

14. Магнитный поток через поверхность, ограниченную замкнутым проводящим контуром, изменяется с постоянной скоростью. Если в течение промежутка времени $\Delta t=16$ мс магнитный поток изменися на $\Delta \Phi=4,0$ мВб, то в контуре возникла ЭДС индукции, модуль которой $|\mathscr{E}_{\rm ИНД}|$ равен:

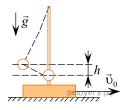
15. Математический маятник, совершающий свободные гармонические колебания, проходит самую нижнюю точку траектории. Если частота колебаний маятника v=2 Γ ц, то минимальный промежуток времени Δt , через который маятник окажется в наивысшей точке траектории, равен:

16. На рисунке изображён параллельный монохроматический световой пучок, испускаемый лазерной указкой и проходящий через границу раздела двух прозрачных сред 1 и 2. Если для сред 1 и 2 соответственно: n_1 и n_2 — абсолютные показатели преломления, λ_1 и

 λ_2 — длины волн светового излучения, v_1 и v_2 — частоты светового излучения, v_1 и v_2 — скорости распространения светового излучения, S_1 и S_2 — площади поперечных сечений светового пучка, то правильные соотношения обозначены цифрами:

1)
$$n_1 < n_2$$
 2) $\lambda_1 < \lambda_2$ 3) $\nu_1 = \nu_2$ 4) $\nu_1 = \nu_2$ 5) $S_1 = S_2$

17. При фотоэффекте работа выхода $A_{\rm вых}$ электрона из вещества, длина волны λ излучения, падающего на поверхность вещества, и максимальная кинетическая энергия $E_{\rm k\,max}$ электрона, вылетевшего из вещества, связаны соотношением, обозначенным цифрой:

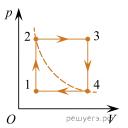

1)
$$E_{\text{Kmax}} = -\frac{hc}{\lambda} - A_{\text{Bbix}}$$
 2) $E_{\text{Kmax}} = A_{\text{Bbix}} + \frac{hc}{\lambda}$

3)
$$E_{\text{Kmax}} = \frac{hc}{\lambda} - A_{\text{Bbix}}$$
 4) $E_{\text{Kmax}} = A_{\text{Bbix}} - \frac{hc}{\lambda}$
5) $E_{\text{Kmax}} = \sqrt{A_{\text{Bbix}}^2 + \left(\frac{hc}{\lambda}\right)^2}$

18. Число электронов в электронейтральном атоме родия равно:

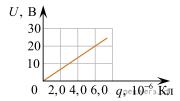
102,905	106,42	107,868	112,411	114,818	118,710
45 <i>Rh</i>	46 <i>Pd</i>	47 <i>Ag</i>	48 <i>Cd</i>	49 L n	50 <i>Sn</i>
родий	палладий	серебро	кадмий	индий	олово
192,217	195,084	196,967	200,59	204,383	207,2
77 <i>lr</i>	78 <i>Pt</i>	79 <mark>Au</mark>	80 <i>Нg</i>	81 <i>Tl</i>	82 <mark>Р</mark> b
иридий	платина	золото	ртуть	таллий	ре свинец ь

- 1) 45 2) 57 3) 58 4) 102 5) 103
- 19. Из одной точки с высоты H бросили два тела в противоположные стороны. Начальные скорости тел направлены горизонтально, а их модули $\upsilon_1=10$ м/с и $\upsilon_2=15$ м/с. Если расстояние между точками падения тел на горизонтальной поверхности земли L=100 м, то чему равна высота H? Ответ приведите в метрах.
- **20.** Телу, находящемуся на гладкой наклонной плоскости, образующей угол $\alpha=60^\circ$ с горизонтом, ударом сообщили начальную скорость, направленную вверх вдоль плоскости. Если время, через которое тело вернётся в начальное положение, t=3.7 с, то чему равен модуль начальной скорости тела равен? Ответ приведите в метрах в секунду.
- **21.** Однородный алюминиевый ($\rho_1 = 2,70 \text{ г/см}^3$) шар массой m = 54,0 г, подвешенный к динамометру, полностью погружен в керосин ($\rho_2 = 0,800 \text{ г/см}^3$). Если шар полностью извлечь из керосина в воздух, то чему будет равно изменение показаний динамометра ΔF ? Ответ приведите в миллиньютонах.
- **22.** На гладкой горизонтальной поверхности установлен штатив массой M=800 г, к которому на длинной нерастяжимой нити подвешен шарик массой m=200 г, находящийся в состоянии равновесия (см. рис.). Штативу ударом сообщили горизонтальную скорость, модуль которой $\mathbf{v}_0=0.95$ м/с. Чему равна максимальная высота h, на которую поднимется шарик после удара? Ответ приведите в миллиметрах.

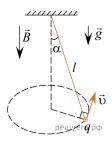

23. В сосуде под давлением p=450 кПа находится кислород (M=32 г/моль) массой m=500 г при температуре t=18 °C. Чему равна вместимость V сосуда? Ответ приведите в литрах.

Примечание. Кислород считать идеальным газом.

24. Значения плотности $\rho_{\rm H}$ насыщенного водяного пара при различных температурах t представлены в таблице. Если в одном кубическом метре комнатного воздуха при температуре $t_0 = 20$ °C содержится m = 11.2 г водяного пара, то чему равна относительная влажность ϕ воздуха в комнате? Ответ приведите в процентах..


t, °C	16	17	18	19	20
$\rho_{\rm H}, r/m^3$	13,6	14,5	15,4	16,3	17,3

25. Идеальный одноатомный газ, количество вещества которого $\upsilon=0,400$ моль, совершил замкнутый цикл, точки 2 и 4 которого лежат на одной изотерме. Участки 1–2 и 3–4 этого цикла являются изохорами, а участки 2–3 и 4–1 — изобарами (см. рис). Работа, совершённая силами давления газа за цикл, A=332 Дж. Если в точке 3 температура газа $T_3=1156$ К, то чему в точке 1 равна температура T_1 газа? Ответ приведите в Кельвинах.


26. На оси Ox в точке с координатой x_0 находится неподвижный точечный заряд. К нему приближается другой точечный заряд, движущийся вдоль оси Ox. Если при изменении координаты движущегося заряда от $x_1=95$ мм до $x_2=55$ мм модуль силы взаимодействия зарядов изменился от $F_1=3$,0 мкH до $F_2=27$ мкH, то чему равна координата x_0 неподвижного заряда? Ответ приведите в миллиметрах.

27. График зависимости напряжения U на конденсаторе от его заряда q изображён на рисунке. Если заряд конденсатора $q=6,0\cdot 10^{-6}$ Кл, то чему равна энергия электростатического поля W конденсатора? Ответ приведите в микроджоулях.

28. Сила тока в проводнике зависит от времени t по закону I(t)=B+Ct, где B=2,0 А, C=1,0 А/с. Чему равен заряд q, прошедший через поперечное сечение проводника в течение промежутка времени от $t_1=8,0$ с до $t_2=12$ с? Ответ приведите в кулонах.

29. В вакууме в однородном магнитном поле, линии индукции которого вертикальны, а модуль индукции B=6,0 Тл, на невесомой нерастяжимой непроводящей нити равномерно вращается небольшой шарик, заряд которого q=0,30 мкКл (см. рис.). Модуль линейной скорости движения шарика $\upsilon=31$ см/с масса шарика m=30 мг. Если синус угла отклонения нити от вертикали $\sin\alpha=0,10$, то чему равна длина l нити равна? Ответ приведите в сантиметрах.

30. В идеальном колебательном контуре, состоящем из конденсатора и катушки, происходят свободные электромагнитные колебания с частотой $\nu=250~\Gamma$ ц. Если максимальное напряжение на конденсаторе $U_0=1,0~\rm B$, а максимальная сила тока в катушке $I_0=78,5~\rm MA$, то чему равна ёмкость C конденсатора равна? Ответ приведите в микрофарадах.

31. На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1=480$ нм дифракционный максимум третьего порядка ($m_1=3$) наблюдается под углом θ , то максимум четвертого порядка ($m_2=4$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите нанометрах.

32. Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии $D=12~\mathrm{M}$ от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной $l=3,1~\mathrm{M}$, движущегося на расстоянии $d=2,6~\mathrm{M}$ от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t=2,0~\mathrm{C}$. Если кабина и противовес движутся в противоположных направлениях с одинаковы-

ми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите в сантиметрах в секунду.